Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis.

نویسندگان

  • Esmeralda Martí
  • Esther Carrera
  • Omar Ruiz-Rivero
  • José Luis García-Martínez
چکیده

Gibberellin 20-oxidases, enzymes of gibberellin (GA) biosynthesis, play an important role in (GA) homeostasis. To investigate the regulation of tomato SlGA20ox1 expression, a genomic clone was isolated, its promoter transcriptionally fused to the GUS reporter gene, and the construct used to transform Arabidopsis. Expression was found in diverse vegetative (leaves and roots) and reproductive (flowers) organs. GUS staining was also localized in the columella of secondary roots. GA negative feed-back regulation of SlGA20ox1:GUS was shown to be active both in tomato and in transformed Arabidopsis. Auxin (indol-3-acetic acid, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid), triiodobenzoic acid (an inhibitor of auxin transport) and benzyladenine (a cytokinin) treatment induced SlGA20ox1:GUS expression associated with increased auxin content and/or signaling, detected using DR5:GUS expression as a marker. Interestingly, SlGA20ox:GUS expression was induced by auxin and root excision in the hypocotyl, an organ not showing GUS staining in control seedlings. In etiolated seedlings, SlGA20ox1:GUS expression occurred in the elongating hypocotyl region of etiolated seedlings and was down-regulated upon transfer to light associated with decrease of growth rate elongation. Our results show that feed-back, auxin and light regulation of SlGA20ox1 expression depends on DNA elements contained within the first 834bp of the 5' upstream promoter region. Putative DNA regulatory sequences involved in negative feed-back regulation and auxin response were identified in that promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination.

Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant ...

متن کامل

Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels

Bioactive gibberellins (GAs) affect many biological processes including germination, stem growth, transition to flowering, and fruit development. The location, timing, and level of bioactive GA are finely tuned to ensure that optimal growth and development occur. The balance between GA biosynthesis and deactivation is controlled by external factors such as light and by internal factors that inc...

متن کامل

DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis.

Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Ar...

متن کامل

Hormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips.

The Unifoliata (Uni) gene plays a major role in development of the compound leaf in pea, but its regulation is unknown. In this study, we examined the effects of plant hormones on the expression of Uni, PsPK2 (the gene for a pea homolog of Arabidopsis PID, a regulator of PIN1 targeting), PsPIN1 (the major gene for a putative auxin efflux carrier) and LE (a gibberellin biosynthesis gene, GA3ox),...

متن کامل

Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl

As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, ligh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of plant physiology

دوره 167 14  شماره 

صفحات  -

تاریخ انتشار 2010